Expression of P2X purinoceptors during rat brain development and their inhibitory role on motor axon outgrowth in neural tube explant cultures.

نویسندگان

  • K K Cheung
  • W Y Chan
  • G Burnstock
چکیده

Extracellular ATP is well known as a neurotransmitter and neuromodulator in the CNS of adults. However, little is known about the involvement of ATP during the development of mammalian brain. In the present study, we have examined the expression pattern of P2X receptor subtype mRNA and protein during perinatal rat brain development (from embryonic day (E) 10 to postnatal day (P) 16 brain). While P2X3 receptors appeared early at E11, they declined in the stages that follow. P2X2 and P2X7 receptors were expressed from E14 onwards, while P2X4, P2X5 and P2X6 receptors were expressed from P1 onwards. P2X1 receptor expression was not observed in any of the developmental ages examined. We investigated the effect of 100 microM ATP and alpha,beta-methylene ATP (alpha,beta-meATP; selective agonist for P2X1, P2X2/3 and P2X3 receptors) on motor axon outgrowth in collagen-embedded neural tube explant cultures. Both ATP- and alpha,beta-meATP-treated neural tubes showed a significant reduction in neurite outgrowth compared with the control explants. This inhibitory effect could not be reproduced by uridine triphosphate. In conclusion, all P2X receptor subtypes, except for P2X1, were strongly represented in the developing rat brain. ATP was shown to inhibit motor axon outgrowth during early embryonic neurogenesis, most likely via the P2X3 receptor. It is speculated that P2X7 receptors may be involved in programmed cell death during embryogenesis and that P2X4, P2X(5) and P2X6 receptors might be involved in postnatal neurogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purinergic Signaling during Rat Embryonic Development

Adenosine 5’-triphosphate (ATP) has been shown to be an important extracellular signaling molecule that mediates various physiological activities via the P2 (P2X and P2Y) receptors. However, information on the expression patterns of the P2 receptors during mammalian embryogenesis is limited. We therefore examined the expression patterns of different P2 receptor subtypes in rat embryos. In the h...

متن کامل

P75: Expression of GDNF Genes in the Cerebellum of Rat Neonate Born to Mother with Diabetes

Diabetes Mellitus as a common metabolic disorder in women of reproductive age is rising throughout the globe. Diabetes in pregnancy has various adverse outcomes on different organs development including the central nervous system (CNS) and it can cause learning deficits, behavioral problems and motor dysfunctions in the offspring. The cerebellum is a part of brain that coordinates voluntary mov...

متن کامل

The branchial arches and HGF are growth-promoting and chemoattractant for cranial motor axons.

During development, cranial motor neurons extend their axons along distinct pathways into the periphery. For example, branchiomotor axons extend dorsally to leave the hindbrain via large dorsal exit points. They then grow in association with sensory ganglia, to their targets, the muscles of the branchial arches. We have investigated the possibility that pathway tissues might secrete diffusible ...

متن کامل

Changes in expression of P2X purinoceptors in rat cerebellum during postnatal development.

Changes in expression of P2X receptors (P2X1-7) during postnatal development of the rat cerebellum are described. At P3, immunoreactivity (ir) to all the P2X receptors, except for P2X3 receptors, was found in Purkinje cells and deep cerebellar nuclei, P2X5-ir being most prominent. Granular and microglial cells were labeled for P2X5 (weakly) and P2X4 receptors, respectively. At P7, expression of...

متن کامل

chondroitin sulfate proteoglycan, collagen IX and peanut agglutinin (PNA)-binding molecules inhibit axonal growth and neural crest cell migration in vitro

The migration of neural crest cells is a co-ordinated process controlled by various signals present in the immediate environment of the migratory route. Crest cells move along specific pathways that are highly segmented (Bronner-Fraser, 1993). In the trunk, crest cells emerging from the neural tube move selectively through the rostral half somite (BronnerFraser, 1986; Rickmann et al., 1985), al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 133 4  شماره 

صفحات  -

تاریخ انتشار 2005